Evolvable Hardware for Space Applications

Adrian Stoica, Alex Fukunaga, Ken Hayworth, Carlos Salazar-Lazaro

Jet Propulsion Laboratory,
California Institute of Technology
4800 Oak Grove Drive
Pasadena CA 91109, USA,
adrian.stoica@brain.jpl.nasa.gov
alex.fukunaga@jpl.nasa.gov
ken @brain.jpl.nasa.gov
salazc @brain_jpl.nasa.gov

Abstract. This paper focuses on characteristics and applications of evolvable
hardware (EHW) to space systems, and describes research directions and
ongoing work at JPL. Our motivation for looking at EHW is the need for more
autonomous adaptive space systems. Even with a best design, incorporating the
moslt advanced flight qualified technology at the time, and considering what is
known about the environments it will operate in, during long missions the
hardware becomes no longer optimal. On-board computers can be
reprogrammed by uploading software, however the computing hardware
becomes obsolete, and the sensing hardware may face situations outside its
initial design specs, which makes the ideas of reconfigurable and evolvable
hardware attractive.  As safety of space systems is most critical, and
inappropriate controls can be fatal, at this stage the application of space
evolvable hardware is seen mainly in evolving adapted sensors and sensory
information processing systems. The EHW directions explored at JPL include
(1) intrinsic evolution on analog ASICs, which we demonstrated on a custom
analog necural chip, (2) evolution of analog electronic circuits at CMOS
transistor level, which is work in progress, (3) evolution of dynamical systems
in state-space representations, for which a “modeling clay” approach was
proposed, partly demonstrated in hardware, (4) evolution of algorithms for on-
board signal processing, where we addressed lossless compression, for which
we obtained compression ratios superior to that of the best lossless
compression.

1 Space-oriented evolvable hardware

Spacecraft autonomy plays a key role in future space missions. An intelligent,
autonomous spacecraft must be able to cope with problems for which solutions were
not specified on ground, and should be able to adapt itself to new or changing
environments. Ultimately, all adaptations originate in the on-board electronics that
control such changes. Thus, it is important to address on-board electronics with the
capability to evolve, i.e., modify itself to improve the performance of the systems it
controls.



There are several aspects that need to be considered when addressing space-
oriented EHW. A thing that we consider very important is a systems approach,
understanding clearly that EHW is part of the bigger system for which an optimality
is sought. We need to understand who/what provides the means for calculating a
fitness function for candidate solutions, if there is a target functionality or reward
mechanism stored in some memory on-board, or reinforcement comes from the
environment. Then it is the issue if evolution is an alternative for providing a response
in useful time. Also, of paramount importance is how safe an EHW is for the space
system.

Given that for space systems (e.g. satellites, spacecraft, planetary probes or rovers)
safety is most critical, at this moment we consider that EHW applications are more
suitable to evolving adapted sensors and sensory information processing systems than
for example trajectory control. All the operations from the moment signals reach the
sensors until a decision based on the information it contains is made, or a coded signal
is sent to ground, are fully inter-related and ultimately could be co-evolved in their
ensemble to a global optimal signal processing efficiency. For simplicity, these are
independently considered for evolution: operations that relate to signal acquisition
(sensor evolution, involving modification of sensor sensitivity domain/profile, focus
of attention, control of sensor armrays, etc.) signal pre-processing: (filtering,
amplification), extraction of information for on-board decisions (such as sensor-
pointing), or preparing a signal for transmission to earth (e.g. compression). The
EHW directions we started exploring address each of the above operations. We
performed experiments in intrinsic evolution on analog ASICs, trying to understand
more about intrinsic EHW and integration of such chips into higher level systems
such as control of sensor arrays, antennas and solar panels, instrument pointing (in
this sense we evolved circuits with desired I/O characteristic function of one or
multiple inputs). We address the evolution of electronic circuits, which can be used
for filtering or other signal transformations, exploring the design of evolvable CMOS
chips based on transistor and elementary circuit blocks (current mirrors, differential
pairs, etc). We address evolution of complex dynamic systems, which can be used to
learn decision mechanisms or system behaviors, such as coordinated etc. Finally we
approached evolution of compression algorithms. On all the above we consider that
adaptation by evolution is a promising direction, which we will continue to research.

We could categorize the EHW directions we currently pursue at JPL in:

(1) intrinsic evolution on analog ASICs, so far achieved on a custom
analog neural chip

(2) evolution of analog electronic circuits at CMOS transistor level (not
treated here)

(3) evolution of dynamical systems in state-space representations, for
which a modeling clay approach was proposed, partly demonstrated in
hardware

(4) evolution of algorithms for on-board signal processing, where we
addressed lossless compression, for which we obtained compression
ratios superior to that of the best lossless compression algorithms.



2. Intrinsic evolution on programmable analog ASICs

Thompson's successful intrinsic evolution on an FPGA [l] marked the first
important milestone in a direction that promises certain advantages over extrinsic
EHW. FPAA’s lag behind their digital counterparts in terms of flexibility of
programmability, but are rapidly becoming more suitable for intrinsic evolution, such
that intrinsic evolution on general-purpose programmable analog devices will follow
in a very near future.

Here, we report initial results on intrinsic evolution on dedicated (special purpose)
analog chips (ASICs), more precisely analog neural chips. We are not aware of any
previous published results on this subject, however, the domain of evolutionary neural
networks [9] {10] [11] [12], as well as various analog neural chips exist for several
years, so it is very possible that other researchers have already performed such
experiments, without looking at them as intrinsic EHW but rather as neural
“hardware-in-the-loop” evolutionary learning.

JPL has been involved for many years in the design of analog and digital
concurrent ASICs, including a family of programmable analog neural network chips
[ 2} [ 3] [5). One of these chips, name-coded NN64, consists of 64 neurons, each with
64 digitally programmable synapses. The chip performs analog processing on analog
input signals. The synapses have analog inputs received from chip inputs or from
other neurons on the chip, which they multiply (using a multiplying DAC) with a
digitally-stored weight, providing an analog signal to the neuron somatic level. At the
somatic level the analog contributions of the synapses are summed and passed
through a sigmodal non-linearity, providing analog neuron outputs. D/A and A/D data
acquisition boards interface the chip to a PC, where all the algorithms and controls
are run from LabView.

Signal processing from synaptic input to neural output takes ~250ns, while
reprogramming the weights requires loading in rows of 64, 8 bits at a time (i.e. 64
clock cycles per neuron, random access to the neurons that need update) 64 rows for
the full chip. Using a 33 Mhz clock cycle this would take less than 2 microseconds
per neuron, and about 120 microseconds for the full chip; the speed in the current
LabView setup where the download is controlled by software is about 3 orders of
magnitude lower.

Test 1. The purpose of this test was to evolve a neural functional approximator. A
feedforward three layer 5-3-1 network was used to learn a simple function of one
variable. The target was a bell shape Gaussian curve. The genome was 23 bytes
length, coding the values for the 23 8-bit synaptic weights. Each neuron was pre-
biased to have a 2V output in the absence of the input signal. The fitness function
was determined based on the sum of the squared errors between the calculated target
function, and the circuit response, as measured at 15 input values. The algorithm ran
for 160 generations each of 200 individuals. The result can be compared to the target
in Fig. 1 (left). The response at a ramp signal is illustrated in the oscilloscope caption
in Fig. 1 (right).




Fig. 1. A function learned by on the chip (intrinsic EHW): (left) closeness to
target; (right) response on the oscilloscope.

Test 2. The purpose of this test was to evolve a visuo-motor controller for a mobile
robot. The behavior was simple vision based track following, using one single neuron
to map low resolution visual images to steering control. The inputs were 3x3 high-
grain (low resolution) images, and the neuron output was a value which at its negative
extreme mapped to complete steering left and at its maximum positive value mapped
to complete steering right. A training set collected in a human-controlled driving
session was simplified to obtain 12 training patterns like the ones illustrated in Fig. 2.
The training set was stored in memory, evolution taking place without the robot in the
loop. After 160 generations with a population of 200 the approximation error was
below 5% on the training set, which proved sufficient for the evolved neural
controller to drive the robot around the track.

Steering = -0.7 Steering = 0.3

Fig. 2. Training sets used for learning and Khepera robot following a black trail
painted on a white surface motor such that it follows a black track.




3. Evolution of dynamical systems in state-space representations :
the modeling clay approach to EHW

The behavior of an electronic circuit can be described universally and precisely
in terms of differential equations. Consider the state-space representation:

g = f(g), X(1))

y(1) = g(g(1); X(1))
where x(1) is a vector of continuous signal values coming into the system, y(t) is a
vector of continuous output signal values, and q(t) is a vector of continuous internal
state values, the “memory” of the system. The functions f() and g() are vector valued
and in general non-linear. Figure 3 illustrates an example of the equivalence between

a circuit in its schematic description and the state-space representation, graphically
displayed by drawing the vector field £().

X=0

Fig. 3 An active filter circuit from [6) and the three-dimensional state-space of the circuit
dynamics with two Q1xQ2 vector field planes plotted at different points along the x-axis

We have constructed a simple analog computer described in more detail in [8], which
embodies the functionality:

949449
The functions used are bi-cubics, and the circuit is constructed such that the
coefficients of the terms can be programmed digitally. Thus, a wide range of two state
variable dynamic systems can be implemented on this computer. A special
characteristic of this analog computer is that it is designed to be “context switchable™.
Each of the 20 coefficients of the cubic terms is obtained with a MDAC (Multiplying
Digital to Analog Converter). Each of the 20 MDAC’s are driven by a local digital
memory store. This allows the entire analog computer’s dynamics to change via a
single broadcast addressing into the multiple MDAC memories. An analog storage
stack could be included to store and pass the values of the analog state variables. The
construction is supposed to mimic software process switching. Fast context switching
allows the state-space of a dynamic system to be decomposed into a lookup-table of



smaller vector representations. Input, output, and internal state values remain analog.
Taken together, this is an analog computer architecture that allows for virtual dynamic
systems of any size and complexity limited only by memory size. The actual storage
of the lookup-table is to be implemented using the CMAC [7] compression and
smoothing algorithm. This method uses a combination of overlapping, averaged
memories and hash-table storage in order to prevent the memory size from growing
exponentially with the dimensionality of the state-space.

This architecture is designed as a very general piece of re-configurable analog
hardware which possibly requires more memory and operates slower than an FPAA
type solution, but allows “virtual circuits” of almost limitless complexity to be
embodied. The key aspect of this context-switchable analog computer, which is
desirable for evolvable hardware, is that its native language is the vector field
representation of dynamic systems.

We are exploring, with this hardware architecture in mind, a novel EHW
technique called the “modeling clay” approach to bio-inspired hardware [8]. This
starts with the observation that biological evolutionary histories show progress toward
complexity not through mutations that cause radical, qualitative changes in structure,
but through quantitative changes in the percentage sizes and shapes of existing
structure. Accumulation of these quantitative percentage size changes over many
generations give rise to the complex qualitative changes of form and function. An
excellent example of this phenomenon is the simulation, done by Nilsson and Pelger
of the evolution of the vertebrate eye with graded index lens from only a flat layer of
photosensitive cells with no optic structure[3]. Other examples abound in the
paleontology record.

We have developed an approach for applying this analogy of cell population
growth-based physical deformation to electronic circuit behavior. In the “modeling
clay” approach, mutations are no longer thought of as changes in circuit connectivity
or component values. The mutations now are non-linear stretches and molding of the
vector field itself. Since the vector field represents more explicitly the “behavior” of
the circuit, the hope is that allowing the evolutionary search algorithm to work with
this behavioral description will allow much more efficient evolution of complex
behavior.

4. Evolution of algorithms for on-board signal processing:
results in lossless compression

Salami et al [13] have pioneered the application of EHW for image compression.
In the context of space applications, compression is a very important problem because
of the limited communications bandwidth between a spacecraft and the ground.
Compression is necessary in order to enable the downlink of massive amounts of
science data (images). Because image compression is extremely computationally
intensive, a low-power, fast, hardware implementation of a compression algorithm is
desirable. An EHW system could be used to automatically generate a hardware-based
image compression algorithm specially adapted for the class of images captured by
the spacecraft.



Both intrinsic and extrinsic EHW approaches are possible. For example, suppose a
deep space probe needs to send thousands of similar images (e.g., atmospheric
images) from the mission target (say, Pluto) back to Earth. The spacecraft could send
several exemplar images back to the ground, where an FPGA configuration adapted
for the class of images is evolved and uploaded to the spacecraft (extrinsic EHW).
Alternatively, the spacecraft could evolve image-specific compression strategies
directly using on-board hardware (intrinsic EHW).

To evaluate the utility of EHW for spacecraft on-board image compression, we
have developed a genetic programming (GP) system to perform adaptive image
compression based on predictive coding. Predictive coding uses a compact model of
an image to predict pixel values of an image based on the values of neighboring
pixels. A model of an image is a function model(x,y), which computes (predicts) the
pixel value at coordinate (x,y) of an image, given the values of some neighbors of
pixel (x,y), where neighbors are pixels whose values are known. Typically, when
processing an image in raster scan order (left to right, top to bottom), neighbors are
selected from the pixels above and to the left of the current pixel. To complete the
compression, the error image (the differences between the predicted pixel value and
the actual pixel value) is compressed using an entropy coding algorithm such as
Huffman coding or arithmetic coding. If we transmit this compressed error signal as
well as the model and all other peripheral information, then a receiver can reconstruct
the original image by applying an analogous decoding procedure.

The GP system evolves s-expressions that represent nonlinear predictive models
for lossless image compression. The error image is compressed using a Huffman
encoder. Because the computational cost of evolving nonlinear predictive models
using standard GP systems would be prohibitively expensive, we have implemented a
highly efficient, genome-compiler GP system which compiles s-expressions into
native (Sparc) machine code to enable the application of GP to this problem. The
terminals used for genetic programming were the values of the four neighboring
pixels Image[x-1,y-1],Image[x,y-1], Image[x+1,y-1], Image[x-1,y], and selected
constant values: 1, 5, 10, 100. The functions used were the standard arithmetic
functions (+,-,*, %), and MAX/MIN (which return the max/min of two arguments).

The system was evaluated comparing the size of the compressed files with a
number of standard lossless compression algorithms on a set of gray scale images.
The images used were science images of planetary surfaces taken from the NASA
Galileo Mission image archives. The compression ratio of the following algorithms
are shown in Table 1:

evolved: the evolved predictive coding compression algorithm

CALIC, a state-of-the art lossless image compression

LOCO-], recently selected as the new 1SO JPEG-LS (lossless JPEG) baseline

standard.

e gzip, compress, pack: These are standard Unix string compression utilities;
gzip implements the Lempel-Ziv (LZ77) algorithm, compress implements the
adaptive Lempel-Ziv-Welch (LZW) algorithm, and pack uses Huffman
coding.

e szip, a software simulation of the Rice Chip, the current standard lossless

compression hardware used by NASA.




It important to note that in our experiments, a different model was evolved for each
image. In contrast, the other approaches (CALIC, GIF, etc.) apply a single model to
every image. Thus, the time to compress an image using the genetic programming
approach is several orders of magnitude greater than the time it takes to compress an
image using other methods. However, the time to decompress an image is competitive
with other methods.

Table 1. Compression ratios of various compression techniques applied to set of
test images.

Image | Original | evolved | CALIC | LOCO-I | com- gzip pack szip
Name | size press

Earth | 72643 30380 31798 32032 42502 | 40908 55068 | 40585

Earth4 | 11246 5513 5631 5857 7441 6865 8072 7721

Earth6 | 20400 9288 10144 10488 11339 [ 10925 13264 | 12793

Earth7 [ 21039 10218 11183 11476 13117 12520 15551 | 13269

Earth8 [ 19055 9594 10460 10716 11699 | 11350 13298 | 12465

The results obtained show that for science data images, an evolvable-hardware
based image compression system is capable of achieving compression ratios superior
to that of the best known lossless compression algorithms. In future work, we will
focus on efficient, low-power mappings of evolved s-expressions to a general purpose
FPGA on-board a spacecraft, as well as the evolution of models which perform well
for a class of problems (as opposed to models specialized for individual images).

Acknowledgements

The research described in this paper was performed at the Center for Integrated
Space Microsystems, Jet Propulsion Laboratory, California Institute of Technology
and was sponsored by the National Aeronautics and Space Administration. The
authors wish to thank Anil Thakoor, Sarita Thakoor, Benny Toomarian for ideas
shared during discussions on evolvable hardware.

References

1. Thompson, A. et al.. Unconstrained evolution and hard consequences, in Towards
Evolvable Hardware Sanchez & Tomassini eds., Springer-Verlag Berlin 1996 p136-165

2. Higuchi, T. et al.: Evolvable hardware and its applications to pattern recognition and fault-
tolerant systems, in Towards Evolvable Hardware Sanchez & Tomassini eds., Springer-
Verlag Berlin Heidelberg 1996 p118-135

3. Nilsson, D., Pelger, S.: A pessimistic estimate of the time required for an eye to evolve,
Proceedings of the Royal Society of London, B, 256, p53-8

6. Horowitz, P.. Winficld, H.: The Art of Electronics 2™ ed Cambridge Univ. Press 1989

7. Albus, J. S.: A new approach to manipulator control: the Cerebellar Model Articulation
Controller (CMAC), Trans. of the ASME Sept. 1975, p220-7




Hayworth, K., The “Modeling Clay” approach to bio-inspired electronic hardware,
Submitted to ICES98.

Heistermann, J., The application of a genetic approach as an algorithm for neural
networks, Lecture Notes in Computer Science v496: p297-301, 1991

Prados, D. L., New learning algorithm for training multilayered neural networks that uses
genetic-algorithm techniques, Electronics Letters v28 (16): p1560-1561, July 30, 1992

. Maniezzo, V., Genetic cvolution of the topology and weight distribution of neural

networks, IEEE Transactions on Neural Networks v5 (1): p39-53. Jan 1994

Yao, X.. Liu, Y., A new evolutionary system for evolving artificial neural networks, IEEE
Transactions on Neural Networks, v8 (3): p694-713, May 1997

Salami, M., Murakawa, M., Higuchi, T., Data compression based on evolvable hardware,
Proc. Evolvable Systems Workshop, International Joint Conference on Artificial
Intelligence, 1997



